Metal and metalloid biorecovery using fungi
نویسندگان
چکیده
Bioleaching is a proven bioprocess for metal recovery by solution from solid matrices, while a bioprecipitation or biomineralization approach is of potential for biorecovery from solution. Fungi can directly and indirectly mediate the formation of many kinds of minerals, including oxides, phosphates, carbonates and oxalates, as well as elemental forms of metals and metalloids such as Ag, Se and Te. Fungal capabilities may offer a potentially useful contribution to biotechnological and physico-chemical methods for metal recovery.
منابع مشابه
The Geomycology of Elemental Cycling and Transformations in the Environment.
Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are si...
متن کاملArbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration
Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration o...
متن کاملEcological and human health risks associated with abandoned gold mine tailings contaminated soil
Gold mining is a major source of metal and metalloid emissions into the environment. Studies were carried out in Krugersdorp, South Africa, to evaluate the ecological and human health risks associated with exposure to metals and metalloids in mine tailings contaminated soils. Concentrations of arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel...
متن کاملBiophysical and Biochemical Markers of Metal/Metalloid-Impacts in Salt Marsh Halophytes and Their Implications
As a major sink, estuarine/salt marsh ecosystem can receive discharges laden with myriads of contaminants including metals/metalloids from man-made activities. Two among the major consequences of metal/metalloid-exposure in estuarine/salt marsh ecosystem flora such as halophytic plants are: (a) the excessive accumulation of light energy that in turn leads to severe impairments in the photosyste...
متن کاملNatural heavy metal and metalloid concentrations in sediments of the Minho River estuary (Portugal): baseline values for environmental studies.
Forty-nine surface sediment samples from the Minho estuary sector between Tui and Caminha were analyzed for grain-size contents, Al, As, Cr, Cu, Hg, Li, Pb, Sn, and Zn concentrations. Selected heavy metal (Cu, Cr, Hg, and Zn) and metalloid (As and Sn) distributions were normalized against Al and Li with the main goal of compensating for natural grain-size variability and to separate natural fro...
متن کامل